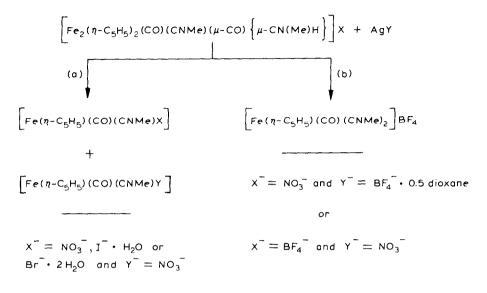
Preliminary communication

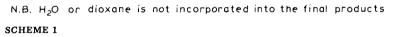
THE REACTION OF $[Fe_2(\eta - C_5H_5)_2(CO)_2(CNMe)\{CN(Me)H\}]^*$ WITH Ag^I SALTS. ANION CONTROL OF THE REACTION PRODUCTS

BRIAN CALLAN and A.R. MANNING*

Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received January 21st, 1986)

Summary


The reactions of equimolar amounts of $[Fe_2(\eta-C_5H_5)_2(CO)_2(CNMe)-$ {CN(Me)H}]X and AgY in methanol results in a two-electron oxidation of $[Fe_2(\eta-C_5H_5)_2(CO)_2(CNMe)_2]$ to give $[Fe(\eta-C_5H_5)(CO)(CNMe)_2]BF_4$ when either X⁻ or Y⁻ are the non-coordinating anion BF₄⁻, but $[Fe(\eta-C_5H_5)-(CO)(CNMe)X]$ and $[Fe(\eta-C_5H_5)(CO)(CNMe)Y]$ when both X⁻ and Y⁻ are potentially coordinating anions such as NO₃⁻, Br⁻ or I⁻.


We have reported previously that $[Fe_2(\eta - C_5H_5)_2(CO)_2(CNMe)_2]$ reacts quantitatively with 2AgNO₃ in tetrahydrofuran. A two-electron oxidation gives 2[Fe(η -C₅H₅)(CO)(CNMe)NO₃] via an isolable 1:1 adduct [1,2]. The IR spectrum of the adduct is consistent with it having a structure such as [Fe₂(η -C₅H₅)₂(CO)(CNMe)(μ -CO){ μ -CN(Me)AgNO₃}] [1].

To further our studies we have used one electrophile, H^+ , to convert $[Fe_2(\eta-C_5H_5)_2(CO)_2(CNMe)_2]$ to a 1:1 adduct $[Fe_2(\eta-C_5H_5)_2(CO)(CNMe)-(\mu-CO) \{\mu-CN(Me)H\}]^+$ and a second, Ag^+ , to complete the oxidation. The red $[Fe_2(\eta-C_5H_5)_2(CO)(CNMe)(\mu-CO) \{\mu-CN(Me)H\}]X$ salts have been prepared from $[Fe_2(\eta-C_5H_5)_2(CO)_2(CNMe)_2]$ by a number of routes. (i) The direct reaction with one equivalent of p-MeC₆H₄SO₃H·H₂O gave the salt where $X^- = p$ -MeC₆H₄SO₃·H₂O⁻ which was not isolated but used in situ. (ii) The reaction with one mole of $[Fe_2(\eta-C_5H_5)_2(CO)_2\{\mu-CN(Me)H\}_2][X]_2$ in methanol followed by partial removal of the solvent at reduced pressure gave those salts where $X^- = BF_4^-$ or PF_6^- in 25% yield. (iii) The reaction with one equivalent of $[Fe(\eta-C_5H_5)_2]PF_6$ in dichloromethane or ether solutions at 20°C gave the salt where $X^- = PF_6^-$ as a bright red precipitate in 60% yield. (iv) NiX₂ · nH₂O in ether at -10°C followed by the recrystallization of the initial products from acetone ether mixtures at 20°C gave the salts where $X^- = BF_4^- OI PF_6^-$ and $OS^- OSH_2O$. The subsequent reaction

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

of these salts with one equivalent of AgY in methanol results in the precipitation of silver and, overall, a two-electron oxidative cleavage of the Fe—Fe bond of $[Fe_2(\eta-C_5H_5)_2(CO)_2(CNMe)_2]$ with H⁺ and Ag⁺ acting together as the oxidant. However, the reaction products depend critically on the nature of the counteranions present (Scheme 1).

When both X⁻ and Y⁻ are coordinating anions such as NO₃⁻, Br⁻ or I⁻, the four CO/CNMe ligands of $[Fe_2(\eta - C_5H_5)_2(CO)_2(CNMe)_2]$ are shared equally between the Fe atoms of the two mononuclear products (route a) (Scheme 1). However, if either X⁻ or Y⁻ are the non-coordinating anion BF₄⁻ (or PF₆⁻), the only isolated product is the BF₄⁻ (or PF₆⁻) salt of the $[Fe(\eta - C_5H_5)(CO)$ - $(CNMe)_2]^+$ cation (route b), but the fate of the 'Fe $(\eta - C_5H_5)(CO)^+$ ' fragment is unknown. When X⁻ = p-MeC₆H₄SO₃⁻ and Y⁻ = NO₃⁻, products from both (a) and (b) are formed.

If methanol is replaced by acetonitrile, which is potentially a good ligand, the only products are $[Fe(\eta-C_5H_5)(CO)(CNMe)(NCMe)]^+$ salts irrespective of the nature of X⁻ and Y⁻.

In all of the reactions silver is precipitated virtually quantitatively, but we have obtained no information on the fate of the H^+ electrophile which does not seem to be lost as H_2 .

References

- 1 A.R. Manning, R. Kumar, S. Willis and F.S. Stephens, Inorg. Chim. Acta, 61 (1982) 141.
- 2 B. Callan and A.R. Manning, J. Chem. Soc., Chem. Commun., (1983) 263.